Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.639
Filter
1.
BMC Cardiovasc Disord ; 24(1): 239, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714966

ABSTRACT

OBJECTIVE: Cerebral malperfusion (CM) is a common comorbidity in acute type A aortic dissection (ATAAD), which is associated with high mortality and poor neurological prognosis. This meta-analysis investigated the surgical strategy of ATAAD patients with CM, aiming to compare the difference in therapeutic effectiveness between the central repair-first and the early reperfusion-first according to clinical outcomes. METHODS: The meta-analysis and systematic review was conducted based on studies sourced from the PubMed, Embase, and Cochrane literature database, in which cases of ATAAD with CM underwent surgical repair were included. Data for baseline characteristics, mortality, survival were extracted, and risk ratio (RR) values and the pooled mortality were calculated. RESULTS: A total of 17 retrospective studies were analyzed, including 1010 cases of ATAAD with CM underwent surgical repair. The pooled early mortality in early reperfusion group was lower (8.1%; CI, 0.02 to 0.168) than that in the central repair group (16.2%; CI, 0.115 to 0.216). The pooled long-term mortality was 7.9% in the early reperfusion cohort and 17.4% the central repair-first cohort, without a statistically significant heterogeneity (I [2] = 51.271%; p = 0.056). The mean time of symptom-onset-to-the-operation-room in all the reports was 8.87 ± 12.3 h. CONCLUSION: This meta-analysis suggested that early reperfusion-first may achieved better outcomes compared to central repair-first in ATAAD patients complicated with CM to some extent. Early operation and early restoration of cerebral perfusion may reduce the occurrence of some neurological complications. TRIAL REGISTRATION: The meta-analysis was registered in the International Prospective Register of Systematic Reviews database (No. CRD CRD42023475629) on Nov. 8th, 2023.


Subject(s)
Aortic Aneurysm , Aortic Dissection , Cerebrovascular Circulation , Humans , Aortic Dissection/surgery , Aortic Dissection/mortality , Aortic Dissection/complications , Aortic Dissection/physiopathology , Aortic Dissection/diagnostic imaging , Treatment Outcome , Risk Factors , Time Factors , Aortic Aneurysm/surgery , Aortic Aneurysm/mortality , Aortic Aneurysm/complications , Aortic Aneurysm/physiopathology , Aortic Aneurysm/diagnostic imaging , Female , Male , Middle Aged , Aged , Acute Disease , Cerebrovascular Disorders/surgery , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/mortality , Cerebrovascular Disorders/diagnosis , Cerebrovascular Disorders/physiopathology , Adult , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/mortality , Risk Assessment , Reperfusion , Time-to-Treatment
2.
Neuron ; 112(9): 1378-1380, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38697020

ABSTRACT

Adequate reperfusion after ischemic stroke is a major determinant of functional outcome yet remains unpredictable and insufficient for most survivors. In this issue of Neuron, Binder et al.1 identify leptomeningeal collaterals (LMCs) in mice and human patients as a key factor in regulating reperfusion and hemorrhagic transformation following stroke.


Subject(s)
Collateral Circulation , Reperfusion , Stroke , Humans , Animals , Stroke/physiopathology , Collateral Circulation/physiology , Mice , Ischemic Stroke/physiopathology , Cerebrovascular Circulation/physiology , Meninges/blood supply , Brain Ischemia/physiopathology
3.
Sci Rep ; 14(1): 9290, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654009

ABSTRACT

Smoking has detrimental effects on the cardiovascular system; however, some studies have reported better clinical outcomes after thrombolysis for ischemic stroke in smokers than in nonsmokers, a phenomenon known as the smoking paradox. Therefore, this study aimed to examine the smoking paradox in patients with ischemic stroke receiving reperfusion therapy. Data were collected from a multicenter hospital-based acute stroke registry in Fukuoka, Japan. The 1148 study patients were categorized into current and noncurrent smokers. The association between smoking and clinical outcomes, including neurological improvement (≥ 4-point decrease in the National Institutes of Health Stroke Scale during hospitalization or 0 points at discharge) and good functional outcomes (modified Rankin Scale score of 0-2) at 3 months, was evaluated using logistic regression analysis and propensity score-matched analysis. Among the participants, 231 (20.1%) were current smokers. The odds ratios (ORs) of favorable outcomes after adjusting for potential confounders were not significantly increased in current smokers (OR 0.85, 95% confidence interval [CI] 0.60-1.22 for neurological improvement; OR 0.95, 95% CI 0.65-1.38 for good functional outcome). No significant association was found in the propensity score-matched cohorts. Smoking cessation is strongly recommended since current smoking was not associated with better outcomes after reperfusion therapy.


Subject(s)
Ischemic Stroke , Reperfusion , Smoking , Humans , Male , Female , Ischemic Stroke/therapy , Aged , Smoking/adverse effects , Treatment Outcome , Middle Aged , Aged, 80 and over , Japan/epidemiology , Registries , Thrombolytic Therapy , Propensity Score
4.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38612680

ABSTRACT

The central exacerbating factor in the pathophysiology of ischemic-reperfusion acute kidney injury (AKI) is oxidative stress. Lipid peroxidation and DNA damage in ischemia are accompanied by the formation of 3-nitrotyrosine, a biomarker for oxidative damage. DNA double-strand breaks (DSBs) may also be a result of postischemic AKI. γH2AX(S139) histone has been identified as a potentially useful biomarker of DNA DSBs. On the other hand, hypoxia-inducible factor (HIF) is the "master switch" for hypoxic adaptation in cells and tissues. The aim of this research was to evaluate the influence of hyperbaric oxygen (HBO) preconditioning on antioxidant capacity estimated by FRAP (ferric reducing antioxidant power) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assay, as well as on oxidative stress parameter 3-nitrotyrosine, and to assess its effects on γH2AX(S139), HIF-1α, and nuclear factor-κB (NF-κB) expression, in an experimental model of postischemic AKI induced in spontaneously hypertensive rats. The animals were divided randomly into three experimental groups: sham-operated rats (SHAM, n = 6), rats with induced postischemic AKI (AKI, n = 6), and group exposed to HBO preconditioning before AKI induction (AKI + HBO, n = 6). A significant improvement in the estimated glomerular filtration rate, eGFR, in AKI + HBO group (p < 0.05 vs. AKI group) was accompanied with a significant increase in plasma antioxidant capacity estimated by FRAP (p < 0.05 vs. SHAM group) and a reduced immunohistochemical expression of 3-nitrotyrosine and γH2AX(S139). Also, HBO pretreatment significantly increased HIF-1α expression (p < 0.001 vs. AKI group), estimated by Western blot and immunohistochemical analysis in kidney tissue, and decreased immunohistochemical NF-κB renal expression (p < 0.01). Taking all of these results together, we may conclude that HBO preconditioning has beneficial effects on acute kidney injury induced in spontaneously hypertensive rats.


Subject(s)
Acute Kidney Injury , Hyperbaric Oxygenation , Reperfusion Injury , Animals , Rats , Antioxidants , NF-kappa B , Rats, Inbred SHR , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Kidney , Ischemia , Reperfusion , Oxidative Stress , Oxygen , DNA Damage , Biomarkers , DNA
5.
Neurosurg Rev ; 47(1): 182, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649539

ABSTRACT

BACKGROUND: Endovascular treatment (EVT) is effective for large vessel occlusion (LVO) stroke with smaller volumes of CT perfusion (CTP)-defined core. However, the influence of perfusion imaging during thrombectomy on the functional outcomes of patients with large ischemic core (LIC) stroke at both early and late time windows is uncertain in real-world practice. METHOD: A retrospective analysis was performed on 99 patients who underwent computed tomography angiography (CTA) and CT perfusion (CTP)-Rapid Processing of Perfusion and Diffusion (RAPID) before EVT and had a baseline ischemic core ≥ 50 mL and/or Alberta Stroke Program Early CT Score (ASPECTS) score of 0-5. The primary outcome was the three-month modified Rankin Scale (mRS) score. Data were analyzed by binary logistic regression and receiver operating characteristic (ROC) curves. RESULTS: A fair outcome (mRS, 0-3) was found in 34 of the 99 patients while 65 had a poor prognosis (mRS, 4-6). The multivariate logistic regression analysis showed that onset-to-reperfusion (OTR) time (odds ratio [OR], 1.004; 95% confidence interval [CI], 1.001-1.007; p = 0.008), ischemic core (OR, 1.066; 95% CI, 1.024-1.111; p = 0.008), and the hypoperfusion intensity ratio (HIR) (OR, 70.898; 95% CI, 1.130-4450.152; p = 0.044) were independent predictors of outcome. The combined results of ischemic core, HIR, and OTR time showed good performance with an area under the ROC curve (AUC) of 0.937, significantly higher than the individual variables (p < 0.05) using DeLong's test. CONCLUSIONS: Higher HIR and longer OTR time in large core stroke patients were independently associated with unfavorable three-month outcomes after EVT.


Subject(s)
Endovascular Procedures , Ischemic Stroke , Thrombectomy , Humans , Male , Female , Aged , Endovascular Procedures/methods , Ischemic Stroke/surgery , Middle Aged , Treatment Outcome , Retrospective Studies , Thrombectomy/methods , Aged, 80 and over , Reperfusion/methods , Brain Ischemia/surgery , Stroke/surgery , Perfusion Imaging , Computed Tomography Angiography
6.
Neuroreport ; 35(7): 439-446, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38597327

ABSTRACT

We aimed to clarify the correlation between dynamic change of blood HSP70 and the prognosis of thrombolysis in human and rats, so as to explain the neuroprotection and early warning role of HSP70 in cerebral ischemia-reperfusion. Forty-two patients with acute ischemic stroke were divided into two groups according to the time from onset to thrombolytic therapy: 0 h-3 h (27 patients) and 3-4.5 h group (15 patients). The level of HSP70 in serum before and after thrombolysis was detected by ELISA. Furthermore, a rat model was also used to mimic the ischemic stroke and reperfusion. Peripheral blood of rat samples was collected to detect the level of HSP70 using Elisa. Several signal proteins from MAPK signaling pathway including JNK, p38, ERK (p42/44) were detected at different time points by Western blot of brain tissue. Patients who underwent thrombolytic therapy within 0-3 h had the highest HSP70 level at 1 h after thrombolysis. The higher HSP70 after thrombolysis, the better the patient prognosis. NIHSS scores showed HSP70 was positively correlated with cerebral ischemia. The levels of ERK family (p42/44 MAPK) and p-JNK were decreased gradually along with the time suffering cerebral ischemia. P-ERK, JNK, p-p38 had dynamic changes with increased ischemic time in the middle cerebral artery occlusion model. Dynamic change of HSP70 level in blood may be a biological index that reflects the functional condition of cell survival for cerebral ischemia and estimating the prognostic conditions. Importantly, HSP70 levels in blood were positively correlated with the p38 MAPK pathway in brain tissue.


Subject(s)
Brain Ischemia , Ischemic Stroke , Reperfusion Injury , Animals , Humans , Rats , Infarction, Middle Cerebral Artery , p38 Mitogen-Activated Protein Kinases/metabolism , Reperfusion
7.
Eur J Pharmacol ; 971: 176524, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38561102

ABSTRACT

The present study aimed to explore how resveratrol (Res) confers myocardial protection by attenuating ferroptosis. In vivo and in vitro myocardial ischemia/reperfusion injury (MIRI) models were established, with or without Res pretreatment. The results showed that Res pretreatment effectively attenuated MIRI, as evidenced by increased cell viability, reduced lactate dehydrogenase activity, decreased infarct size, and maintained cardiac function. Moreover, Res pretreatment inhibited MIRI-induced ferroptosis, as shown by improved mitochondrial integrity, increased glutathione level, decreased prostaglandin-endoperoxide synthase 2 level, inhibited iron overload, and abnormal lipid peroxidation. Of note, Res pretreatment decreased or increased voltage-dependent anion channel 1/glutathione peroxidase 4 (VDAC1/GPX4) expression, which was increased or decreased via anoxia/reoxygenation (A/R) treatment, respectively. However, the overexpression of VDAC1 via pAd/VDAC1 and knockdown of GPX4 through Si-GPX4 reversed the protective effect of Res in A/R-induced H9c2 cells, whereas the inhibition of GPX4 with RSL3 abolished the protective effect of Res on mice treated with ischemia/reperfusion.Interestingly, knockdown of VDAC1 by Si-VDAC1 promoted the protective effect of Res on A/R-induced H9c2 cells and the regulation of GPX4. Finally, the direct interaction between VDAC1 and GPX4 was determined using co-immunoprecipitation. In conclusion, Res pretreatment could protect the myocardium against MIRI-induced ferroptosis via the VDAC1/GPX4 signaling pathway.


Subject(s)
Ferroptosis , Myocardial Reperfusion Injury , Animals , Mice , Myocytes, Cardiac , Resveratrol/pharmacology , Voltage-Dependent Anion Channel 1 , Ischemia , Hypoxia , Myocardial Reperfusion Injury/prevention & control , Reperfusion
8.
Acta Neurobiol Exp (Wars) ; 84(1): 70-79, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38587322

ABSTRACT

Hemorrhagic complications may be seen following reperfusion therapy with rtPA and/or thrombectomy after acute ischemic stroke (AIS). Neutrophils, lymphocytes, and platelets have important roles in the inflammatory and immune responses that develop in these patients. We investigated time­dependent changes in blood cells, NIHSS and mRS values according to type of reperfusion therapy in AIS patients who developed cerebral hemorrhage. In AIS patients who underwent rtPA and/or thrombectomy and developed cerebral hemorrhage within the first 24 hours after treatment, leukocyte, neutrophil, lymphocyte, platelet counts and their ratios were recorded on admission, 1st, 3rd, and 7th days. NIHSS values on admission, 3rd days and mRS values on admission, discharge, and the 3rd month were recorded. These values were compared according to the type of reperfusion therapy. Out of 436 AIS patients, rtPA was applied in 50.5%, thrombectomy in 28.2%, and rtPA+thrombectomy in 21.3%. Hemorrhage developed in 25.5% of the patients. Patients treated with thrombectomy had a greater rate of cerebral hemorrhage. Pre­stroke mRS values were lower in all therapy types than mRS scores at discharge and the 3rd month. The NIHSS scores did not differ significantly in 3 days. Depending on the type of reperfusion treatment, there are a few time­dependent significant changes observed in the blood cell counts and ratios. In conclusion, there is a relation between the type of reperfusion therapy and the time­dependent changes in blood cells and ratios as well as mRS scores among AIS patients who have undergone rtPA and/or thrombectomy and developed cerebral hemorrhage.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/complications , Ischemic Stroke/therapy , Treatment Outcome , Stroke/complications , Stroke/therapy , Cerebral Hemorrhage/complications , Blood Cells , Reperfusion/adverse effects , Brain Ischemia/complications
9.
Medicine (Baltimore) ; 103(14): e37692, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579050

ABSTRACT

Reperfusion therapy of acute myocardial infarction (AMI) refers to physical or chemical recanalization and restoration of blood flow to an occluded coronary artery, and current techniques for reperfusion therapy include intravenous thrombolysis, percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). The number of patients receiving emergency CABG in the real world is decreasing due to the disadvantages of CABG and the improvement in PCI procedures. Thrombolytic therapy has some disadvantages such as low recanalization rate, high risk of reocclusion and bleeding, and short time window. On the other hand, intracoronary interventional therapy may meet the requirements of "early, complete and persistent" patency of coronary arteries at different time points. However, in the emergency PCI, although thrombus aspiration via a catheter or balloon dilation is performed, residual thrombus with heavy or low TIMI (thrombolysis in myocardial infarction) myocardial perfusion grading is still observed in some patients, suggesting disordered microcirculation. Currently, the treatment of microcirculatory disturbance in emergency PCI mainly employed injection of tirofiban, adenosine, thrombolytic agent or other drugs into the local area via a microcatheter in a short time, all of which can significantly reduce the thrombus load and improve TIMI perfusion. Herein, we report that a microcatheter was indwelled in the coronary artery for continuous pumping of low-dose thrombolytic drugs as reperfusion therapy in 12 patients with acute and subacute MI.


Subject(s)
Angioplasty, Balloon, Coronary , Myocardial Infarction , Percutaneous Coronary Intervention , Thrombosis , Humans , Fibrinolytic Agents , Microcirculation , Angioplasty, Balloon, Coronary/methods , Myocardial Infarction/etiology , Thrombolytic Therapy/adverse effects , Reperfusion , Thrombosis/etiology , Treatment Outcome , Myocardial Reperfusion
10.
Arch Med Res ; 55(3): 102983, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492326

ABSTRACT

Maternal obesity predisposes offspring (F1) to cardiovascular disease. To evaluate basal heart function and ischemia-reperfusion (IR) responses in F1 males and females of obese mothers, female Wistar rats (F0) were fed chow or an obesogenic (MO) diet from weaning through pregnancy and lactation. Non-sibling F1 males and females were weaned to chow at postnatal day (PND) 21 and euthanized at PND 550. Offspring of MO mothers (MOF1) rarely survive beyond PND 650. Hearts were immediately isolated from euthanized F1s and subjected to 30 min ischemia with 20 min reperfusion. Retroperitoneal fat, serum triglycerides, glucose, insulin, and insulin resistance were measured. Baseline left ventricular developed pressure (LVDP) was lower in male and female MOF1 than in controls. After global ischemia, LVDP in control (C) male and female F1 recovered 78 and 83%, respectively, while recovery in MO male and female F1 was significantly lower at 28 and 52%, respectively. Following the IR challenge, MO hearts showed a higher functional susceptibility to reperfusion injury, resulting in lower cardiac reserve than controls in both sexes. Female hearts were more resistant to IR. Retroperitoneal fat was increased in male MOF1 vs. CF1. Circulating triglycerides and insulin resistance were increased in male and female MOF1 vs. CF1. These data show that MO programming reduces F1 cardiac reserve associated with age-related insulin resistance in a sex-specific manner.


Subject(s)
Insulin Resistance , Prenatal Exposure Delayed Effects , Humans , Rats , Female , Pregnancy , Male , Animals , Aged , Insulin Resistance/physiology , Rats, Wistar , Obesity , Insulin , Triglycerides , Diet, High-Fat , Ischemia , Reperfusion
11.
Cells ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474360

ABSTRACT

Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, SA-10, to assess its therapeutic potential for ocular stroke. METHODS: To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1ß and IFN-γ for 1 h, followed by the addition of SA-10 (10 µM). Inhibition of microglial activation, ROS scavenging, cytoprotective and anti-inflammatory activities were measured. In vivo I/R-injured mouse retinas were treated with either PBS or SA-10 (2%) intravitreally, and pattern electroretinogram (ERG), spectral-domain optical coherence tomography, flash ERG and retinal immunocytochemistry were performed. RESULTS: SA-10 significantly inhibited microglial activation and inflammation in vitro. Compared to the control, the compound SA-10 significantly attenuated cell death in both microglia (43% vs. 13%) and R28 cells (52% vs. 17%), decreased ROS (38% vs. 68%) production in retinal microglia cells, preserved neural retinal function and increased SOD1 in mouse eyes. CONCLUSION: SA-10 is protective to retinal neurons by decreasing oxidative stress and inflammatory cytokines.


Subject(s)
Reperfusion Injury , Retinal Ganglion Cells , Mice , Animals , Reactive Oxygen Species/metabolism , Retinal Ganglion Cells/metabolism , Reperfusion Injury/metabolism , Ischemia/metabolism , Anti-Inflammatory Agents/therapeutic use , Inflammation/metabolism , Reperfusion
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 222-228, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38512032

ABSTRACT

Objective To investigate the effects of triptolide (TP) on microglial M1/M2 polarization after cerebral ischemia-reperfusion (I/R) injury in rats and the underlying molecular mechanism. Methods A rat model of middle cerebral artery occlusion (MCAO) was established. TP was administered to rats at doses of 0.1 and 0.2 mg/kg, with a sham surgery group as the control group. Longa scoring was performed to grade neurological deficits in rats; HE staining was used to observe the morphology of neurons in ischemic brain tissues; neuron-specific nuclear protein (NeuN) immunofluorescence staining was used to measure the number of neurons; and Western blot analysis was used to measure the expression levels of ionised calcium-binding adaptor molecule-1 (Iba1), inducible nitric oxide synthase (iNOS), arginase 1 (Arg1), Toll-like receptor 4 (TLR4), nuclear factor κB (NF-κB), NeuN and caspase-3 in ischemic-brain tissues. The protein levels of interleukin 1ß (IL-1ß) and IL-10 were measured by ELISA. Immunofluorescence double labelling was performed to detect the expression of Arg1 and TLR4 in microglia. Results Compared with the model group, the neurological score of the TP treatment group was significantly reduced and the neuronal damage was significantly alleviated. IL-1ß levels decreased while IL-10 levels increased. The expression levels of iNOS, TLR4, NF-κB and caspase-3 decreased, while the expression levels of Arg1 and NeuN increased. Conclusion TP treatment ameliorates cerebral I/R injury in rats, which may be attributed to the promotion of microglial M2 polarization, thereby reducing the release of inflammatory factors and inhibiting apoptosis.


Subject(s)
Brain Ischemia , Diterpenes , Phenanthrenes , Reperfusion Injury , Animals , Rats , Caspase 3 , Interleukin-10 , Microglia , Toll-Like Receptor 4 , NF-kappa B , Reperfusion , Reperfusion Injury/drug therapy , Interleukin-1beta , Brain Ischemia/drug therapy , Epoxy Compounds
13.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(3. Vyp. 2): 55-66, 2024.
Article in Russian | MEDLINE | ID: mdl-38512096

ABSTRACT

OBJECTIVE: The study goal was the assessment of heterogeneous treatment effects of Cerebrolysin as an early add-on to reperfusion therapy in stroke patients with varying risk of hemorrhagic transformation (HT). MATERIAL AND METHODS: It was post hoc analysis of the CEREHETIS trial (ISRCTN87656744). Patients with middle cerebral artery infarction (n=238) were stratified by HT risk with the HTI score. The study outcomes were symptomatic and any HT, and functional outcome measured with the modified Rankin Scale (mRS) on day 90. Favorable outcome was defined as an mRS score of ≤2. Heterogeneous treatment effect analysis was performed using techniques of meta-analysis and the matching-smoothing method. RESULTS: Heterogeneity of Cerebrolysin treatment effects was moderate (I2=36.98-69.3%, H2=1.59-3.26) and mild (I2=18.33-32.39%, H2=1.22-1.48) for symptomatic and any HT, respectively. A positive impact of the Cerebrolysin treatment on HT and functional outcome was observed in patients with moderate (HTI=1) and high (HTI≥2) HT risk. However, the effect was neutral in those with low risk (HTI=0). In high HT risk patients, there was a steady decline in the rate of symptomatic (HTI=0 vs. HTI≥2: by 3.8%, p=0.120 vs. 14.3%, p<0.001) and any HT (HTI=0 vs. HTI≥2: by 0.6%, p=0.864 vs. 19.5%, p<0.001). Likewise, Cerebrolysin treatment resulted in an overall decrease in the mRS scores (HTI=0 vs. HTI≥2: by 2.1%, p=0.893 vs. 63%, p<0.001) with a reciprocal increase of the fraction with favorable outcome (HTI=0 vs. HTI≥2: by 2% p=0.634 vs. 19.2%, p<0.001). CONCLUSION: Clinically meaningful heterogeneity of Cerebrolysin treatment effects on HT and functional outcome was established in stroke patients. The Cerebrolysin positive impact was significant in those whose estimated on-admission HT risk was either moderate or high.


Subject(s)
Amino Acids , Ischemic Stroke , Stroke , Humans , Treatment Effect Heterogeneity , Stroke/drug therapy , Reperfusion
14.
Methods Mol Biol ; 2754: 581-600, 2024.
Article in English | MEDLINE | ID: mdl-38512691

ABSTRACT

Cerebral ischemia produces a decrease, loss, or instability of the assembly processes in the neuronal cytoskeleton, related to the alteration in the normal processes of phosphorylation of the Tau protein, triggering its hyperphosphorylation and altering the normal processes of formation of neuronal microtubules. Here we describe the methods used to study the impact of middle cerebral artery occlusion (MCAo) on neurological functions and Tau phosphorylation in Wistar rat brain.


Subject(s)
Brain Ischemia , tau Proteins , Rats , Animals , tau Proteins/metabolism , Phosphorylation , Rats, Wistar , Brain Ischemia/metabolism , Ischemia/metabolism , Reperfusion , Brain/metabolism , Infarction, Middle Cerebral Artery/metabolism
16.
FASEB J ; 38(6): e23575, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38530256

ABSTRACT

Ischemia-reperfusion injury (IRI) is one of the primary clinical causes of acute kidney injury (AKI). The key to IRI lies in immune-inflammatory damage, where dendritic cells (DCs) play a central role in eliciting immune responses within the context of inflammation induced by ischemia-reperfusion. Our previous study has confirmed that delayed ischemic preconditioning (DIPC) can reduce the kidney injury by mediating DCs to regulate T-cells. However, the clinical feasibility of DIPC is limited, as pre-clamping of the renal artery is not applicable for the prevention and treatment of ischemia-reperfusion acute kidney injury (I/R-AKI) in clinical patients. Therefore, the infusion of DCs as a substitute for DIPC presents a more viable strategy for preventing renal IRI. In this study, we further evaluated the impact and mechanism of infused tolerogenic CD11c+DCs on the kidneys following IRI by isolating bone marrow-derived dendritic cells and establishing an I/R-AKI model after pre-infusion of DCs. Renal function was significantly improved in the I/R-AKI mouse model after pre-infused with CD11c+DCs. The pro-inflammatory response and oxidative damage were reduced, and the levels of T helper 2 (Th2) cells and related anti-inflammatory cytokines were increased, which was associated with the reduction of autologous DCs maturation mediated by CD11c+DCs and the increase of regulatory T-cells (Tregs). Next, knocking out CD11c+DCs, we found that the reduced immune protection of tolerogenic CD11c+DCs reinfusion was related to the absence of own DCs. Together, pre-infusion of tolerogenic CD11c+DCs can replace the regulatory of DIPC on DCs and T-cells to alleviate I/R-AKI. DC vaccine is expected to be a novel avenue to prevent and treat I/R-AKI.


Subject(s)
Acute Kidney Injury , Ischemic Preconditioning , Reperfusion Injury , Humans , Animals , Mice , Kidney , Ischemia , Acute Kidney Injury/prevention & control , Reperfusion Injury/prevention & control , Reperfusion , Dendritic Cells
17.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456501

ABSTRACT

Efficient clearance and degradation of apoptotic cardiomyocytes by macrophages (collectively termed efferocytosis) is critical for inflammation resolution and restoration of cardiac function after myocardial ischemia/reperfusion (I/R). Here, we define secreted and transmembrane protein 1a (Sectm1a), a cardiac macrophage-enriched gene, as a modulator of macrophage efferocytosis in I/R-injured hearts. Upon myocardial I/R, Sectm1a-KO mice exhibited impaired macrophage efferocytosis, leading to massive accumulation of apoptotic cardiomyocytes, cardiac inflammation, fibrosis, and consequently, exaggerated cardiac dysfunction. By contrast, therapeutic administration of recombinant SECTM1A protein significantly enhanced macrophage efferocytosis and improved cardiac function. Mechanistically, SECTM1A could elicit autocrine effects on the activation of glucocorticoid-induced TNF receptor (GITR) at the surface of macrophages, leading to the upregulation of liver X receptor α (LXRα) and its downstream efferocytosis-related genes and lysosomal enzyme genes. Our study suggests that Sectm1a-mediated activation of the Gitr/LXRα axis could be a promising approach to enhance macrophage efferocytosis for the treatment of myocardial I/R injury.


Subject(s)
Myocardial Reperfusion Injury , Phagocytosis , Mice , Animals , Efferocytosis , Apoptosis , Macrophages/metabolism , Inflammation/metabolism , Membrane Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Reperfusion
18.
Neurology ; 102(7): e209166, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38502892

ABSTRACT

BACKGROUND AND OBJECTIVES: Early treatment with intravenous alteplase increases the probability of lytic-induced reperfusion in large vessel occlusion (LVO) patients. The relationship of tenecteplase-induced reperfusion and the timing of thrombolytic administration has not been explored. In this study, we performed a comparative analysis of tenecteplase and alteplase reperfusion rates and assessed their relationship to the time of thrombolytic administration. METHODS: Patients who were initially treated with a thrombolytic within 4.5 hours of symptom onset were pooled from the Royal Melbourne Stroke Registry, EXTEND-IA, EXTEND-IA TNK, and EXTEND-IA TNK part 2 trials. The primary outcome, thrombolytic-induced reperfusion, was defined as the absence of retrievable thrombus or >50% reperfusion at initial angiographic assessment (or repeat CT perfusion/angiography). We compared the treatment effect of tenecteplase and alteplase through fixed-effects Poisson regression modelling. RESULTS: Among 846 patients included in the primary analysis, early reperfusion was observed in 173 (20%) patients (tenecteplase: 98/470 [21%], onset-to-thrombolytic time: 132 minutes [interquartile range (IQR): 99-170], and thrombolytic-to-assessment time: 61 minutes [IQR: 39-96]; alteplase: 75/376 [19%], onset-to-thrombolytic time: 143 minutes [IQR: 105-180], thrombolytic-to-assessment time: 92 minutes [IQR: 63-144]). Earlier onset-to-thrombolytic administration times were associated with an increased probability of thrombolytic-induced reperfusion in patients treated with either tenecteplase (adjusted risk ratio [aRR] 1.05 per 15 minutes [95% confidence interval (CI) 1.00-1.12] or alteplase (aRR 1.06 per 15 minutes [95% CI 1.00-1.13]). Tenecteplase remained associated with higher rates of reperfusion vs alteplase after adjustment for onset-to-thrombolytic time, occlusion site, thrombolytic-to-assessment time, and study as a fixed effect, (adjusted incidence rate ratio: 1.41 [95% CI 1.02-1.93]). No significant treatment-by-time interaction was observed (p = 0.87). DISCUSSION: In patients with LVO presenting within 4.5 hours of symptom onset, earlier thrombolytic administration increased successful reperfusion rates. Compared with alteplase, tenecteplase was associated with a higher probability of lytic-induced reperfusion, independent of onset-to-lytic administration times. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifiers: NCT02388061, NCT03340493. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that among patients with LVO receiving a thrombolytic, reperfusion was more likely with tenecteplase than alteplase.


Subject(s)
Brain Ischemia , Stroke , Humans , Brain Ischemia/diagnostic imaging , Brain Ischemia/drug therapy , Fibrinolytic Agents , Reperfusion/adverse effects , Stroke/diagnostic imaging , Stroke/drug therapy , Stroke/complications , Tenecteplase/therapeutic use , Thrombolytic Therapy/adverse effects , Tissue Plasminogen Activator/adverse effects , Treatment Outcome
19.
Mediators Inflamm ; 2024: 7459054, 2024.
Article in English | MEDLINE | ID: mdl-38549714

ABSTRACT

Background: Cerebral ischemia-reperfusion injury is a common complication of ischemic stroke that affects the prognosis of patients with ischemic stroke. The lipid-soluble diterpene Tanshinone IIA, which was isolated from Salvia miltiorrhiza, has been indicated to reduce cerebral ischemic injury. In this study, we investigated the molecular mechanism of Tanshinone IIA in alleviating reperfusion-induced brain injury. Methods: Middle cerebral artery occlusion animal models were established, and neurological scores, tetrazolium chloride staining, brain volume quantification, wet and dry brain water content measurement, Nissl staining, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were performed. The viability of cells was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assays, while cell damage was measured by lactate dehydrogenase release in the in vitro oxygen glucose deprivation model. In addition, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were used to evaluate the therapeutic effect of Tanshinone IIA on ischemia/reperfusion (I/R) induced brain injury, as well as its effects on the inflammatory response and neuronal apoptosis, in vivo and in vitro. Furthermore, this study validated the targeting relationship between miR-124-5p and FoxO1 using a dual luciferase assay. Finally, we examined the role of Tanshinone IIA in brain injury from a molecular perspective by inhibiting miR-124-5p or increasing FoxO1 levels. Results: After treatment with Tanshinone IIA in middle cerebral artery occlusion-reperfusion (MCAO/R) rats, the volume of cerebral infarction was reduced, the water content of the brain was decreased, the nerve function of the rats was significantly improved, and the cell damage was significantly reduced. In addition, Tanshinone IIA effectively inhibited the I/R-induced inflammatory response and neuronal apoptosis, that is, it inhibited the expression of inflammatory cytokines IL-1ß, IL-6, TNF-α, decreased the expression of apoptotic protein Bax and Cleaved-caspase-3, and promoted the expression of antiapoptotic protein Bcl-2. In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, Tanshinone IIA also inhibited the expression of inflammatory factors in neuronal cells and inhibited the occurrence of neuronal apoptosis. In addition, Tanshinone IIA promoted the expression of miR-124-5p. Transfection of miR-124-5p mimic has the same therapeutic effect as Tanshinone IIA and positive therapeutic effect on OGD cells, while transfection of miR-124-5p inhibitor has the opposite effect. The targeting of miR-124-5p negatively regulates FoxO1 expression. Inhibition of miR-124-5p or overexpression of FoxO1 can weaken the inhibitory effect of Tanshinone IIA on brain injury induced by I/R, while inhibition of miR-124-5p and overexpression of FoxO1 can further weaken the effect of Tanshinone IIA. Conclusion: Tanshinone IIA alleviates ischemic-reperfusion brain injury by inhibiting neuroinflammation through the miR-124-5p/FoxO1 axis. This finding provides a theoretical basis for mechanistic research on cerebral ischemia-reperfusion injury.


Subject(s)
Abietanes , Brain Injuries, Traumatic , Brain Ischemia , Ischemic Stroke , MicroRNAs , Reperfusion Injury , Humans , Rats , Animals , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , MicroRNAs/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/complications , Oxygen/metabolism , Reperfusion/adverse effects , Glucose/metabolism , Water , Apoptosis
20.
Aging (Albany NY) ; 16(5): 4778-4788, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38451182

ABSTRACT

This study aims to explore the specific mechanism by which miR-155 regulates SHP2 expression in mouse ischemia-reperfusion (I/R) induced necroptosis. Various methods including cardiac ultrasound, TTC staining, Masson staining, TUNEL staining, and Western blotting were used to examine changes in the morphology and function of the rat left ventricle, myocardial fibrosis, as well as the expression of proteins related to tissue and cardiomyocyte necroptosis pathways. In vivo results showed that knockdown (KD) of miR-155 significantly improved cardiac ultrasound parameters (EF, FS, LVAW;d, and LVAW;s), reduced the myocardial infarction area, myocardial fibrosis, and cell apoptosis in I/R mice, upregulated cardiac SHP2 protein expression, and other proteins including p-ERK1/2, NLRP3, GSDMD, caspase-3, caspase-4, and caspase-11 were also significantly decreased. In vitro experiments showed that compared with the SHP2 WT miR-155 KD group, SHP2 protein expression was significantly increased in the SHP2 WT miR-155 KD group, while the expression of other proteins was significantly reduced, consistent with in vivo results. MiR-155 can regulate ERK1/2 and NLRP3 through SHP2. After adding the ERK1/2 inhibitor U0126 to cardiomyocytes from SHP2 KO mice, it was found that the expression of proteins other than SHP2 significantly decreased compared to SHP2 KO cells without the inhibitor. In summary, low expression of miR-155 promoted the expression of SHP2 and improved mouse I/R-induced necroptosis by inhibiting the activation of the ERK1/2 pathway.


Subject(s)
MicroRNAs , Myocardial Infarction , Animals , Mice , Rats , Fibrosis , MAP Kinase Signaling System , MicroRNAs/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Reperfusion , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...